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Abstract

In dealing with large datasets the reduced support vector machine (RSVM)
was proposed for the practical objective to overcome the computational diffi-
culties as well as to reduce the model complexity. In this paper, we propose
two new approaches to generate representative reduced set for RSVM. First, we
introduce Clustering Reduced Support Vector Machine (CRSVM) that builds
the model of RSVM via RBF (Gaussian kernel) construction. Applying clus-
tering algorithm to each class, we can generate cluster centroids of each class
and use them to form the reduced set which is used in RSVM. We also estimate
the approximate density for each cluster to get the parameter used in Gaussian
kernel which will save a lot of tuning time. Secondly, we present Systematic
Sampling RSVM (SSRSVM) that incrementally selects the informative data
points to form the reduced set while the RSVM used random selection scheme.
SSRSVM starts with an extremely small initial reduced set and adds a por-
tion of misclassified points into the reduced set iteratively based on the current
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classifier until the validation set correctness is large enough. We also show our
methods, CRSVM and SSRSVM with smaller size of reduced set, have superior
performance than the original random selection scheme.

Key words and phrases: kernel methods, kernel width estimation, Nyström
approximation, reduced set, sampling methods, support vector machines.

1 Introduction

In recent years support vector machines (SVMs) with linear or nonlinear kernels

[2, 6, 27] have become one of the most promising learning algorithms for classifica-

tion as well as for regression [7, 18, 19, 25, 12], which are two fundamental tasks in

data mining [29]. Via the use of kernel mapping, variants of SVM have successfully

incorporated effective and flexible nonlinear models. There are some major difficul-

ties that confront large data problems due to dealing with a fully dense nonlinear

kernel matrix. To overcome computational difficulties some authors have proposed

low-rank approximation to the full kernel matrix [24, 28]. As an alternative, Lee and

Mangasarian have proposed the reduced support vector machine (RSVM) [14]. The

key ideas of the RSVM are as follows. Prior to training, it randomly selects a portion

of dataset as to generate a thin rectangular kernel matrix. Then it uses this much

smaller rectangular kernel matrix to replace the full kernel matrix in the nonlinear

SVM formulation. Computational time, as well as memory usage, is much less de-

manding for RSVM than that for a conventional SVM using the full kernel matrix.

As a result, the RSVM also simplifies the characterization of the nonlinear separat-

ing surface. RSVM has comparable test errors, sometimes even slightly smaller. In

other words, the RSVM has comparable, or sometimes slightly better, generalization

ability. This phenomenon can be interpreted by the Minimum Description Length

[20] as well as the Occam’s razor [22].

Although the original random selection scheme has a good theoretical foundation

[13], it may not be good representatives of the real data when the size of reduced set is

too small [30]. Different strategies and many kind of basis selection methods have been

discussed [10], in this paper, we propose two new approaches to generate the reduced

set. The first method named Clustering Reduced Support Vector Machine (CRSVM)

[5] that applies the k-means clustering algorithm to each class to generate cluster
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centroids of each class and then use them to form the reduced set that is randomly

selected in RSVM [14]. One of the most important ideas of SVM is kernel technique

that uses a kernel function to represent the inner product of two data points in the

feature space after a nonlinear mapping. We will use the Gaussian kernel through

this paper. The value of the Gaussian kernel can be interpreted as a measure of

similarity between data points. In this case, the reduced kernel matrix records the

similarity between the reduced set and the entire training dataset. This observation

inspires us to select the most representative points of the entire training dataset to

form the reduced set. Using the cluster centroids would be intuitive heuristics. In

order to catch the characteristic of each class we run the k-means clustering algorithm

on each class separately. This idea originally comes from [16]. The Gaussian kernel

function contains a tuning parameter σ, which determines the shape of the kernel

function. Choosing this tuning parameter is called the model selection which is a very

important issue in nonlinear support vector machine. In practice, the conventional

SVM as well as RSVM determine this tuning parameter which is commonly used

in kernel function via a tuning procedure [4]. While, in our approach the kernel

width parameter is determined automatically for each point in the reduced set. This

can be achieved by estimating the approximate density of each resulting cluster [21].

Once we have the reduced kernel matrix, we apply smooth support vector machine

[14] to generate the final classifier. In the second approach, we use a systematic

sampling mechanism to select a reduced set and name it as Systematic Sampling

RSVM (SSRSVM) [3]. This algorithm is inspired by the key idea of SVM that the

SVM classifier can be represented by support vectors and the misclassified points

are a part of support vectors. The SSRSVM randomly selects an extremely small

subset as an initial reduced set. Then, a portion of misclassified points are added

into the reduced set iteratively based on the current classifier until the validation

set correctness is large enough. We tested our methods, CRSVM and SSRSVM, on

six public available datasets [1, 8] respectively. Under the compatible classification

performance on the test set, CRSVM and SSRSVM can generate a smaller reduced set

than the one via random selection scheme. Furthermore, experiments on real datasets

present that CRSVM determines the kernel parameter automatically and individually

for each point in the reduced set while the RSVM used a common kernel parameter

which is determined by a tuning procedure. We also added the comparison of the
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eigen-structures between the full kernel matrix, reduced kernel matrix via random

selection, CRSVM and SSRSVM. The results have shown that the CRSVM and

SSRSVM can provide good discriminant function estimations in supervised learning

tasks. We also observe that CRSVM and SSRSVM are much faster than conventional

SVM under the same level of the test set correctness. Although we focus on reduced

set selection for SSVM, the same methods also can be applied to SSVR [12].

All notations used in the paper are listed as follows. All vectors will be column

vectors unless otherwise specified or transposed to a row vector by a prime superscript
′. The plus function x+ is defined as (x)+ = max {0, x}. The scalar (inner) product

of two vectors x and z in the n-dimensional real space Rn will be denoted by x′z and

the p-norm of x will be denoted by ‖x‖p. For a matrix A ∈ Rm×n, Ai is the ith row of

A which is a row vector in Rn. A column vector of ones of arbitrary dimension will be

denoted by 1. For A ∈ Rm×n and B ∈ Rn×l, the kernel K(A,B) maps Rm×n × Rn×l

into Rm×l. In particular, K(x′, z) is a real number, K(x′, A′) is a row vector in Rm,

K(A, x) is a column vector in Rm and K(A,A′) is an m×m matrix. The base of the

natural logarithm will be denoted by e.

This paper is organized as follows. Section 2 provides the main ideas and formu-

lation for RSVM. In section 3, we give a study on model selection of reduced kernels

via centroid subset and the corresponding kernel width. Another method SSRSVM

is described in section 4. The experimental results of our methods are presented in

section 5 and section 6 concludes the paper.

2 Reduced Support Vector Machines

We now briefly describe the RSVM formulation, which is derived from the generalized

support vector machine (GSVM) [17] and the smooth support vector machine (SSVM)

[15]. We are given a training dataset {(xi, yi)}m
i=1, where xi ∈ Rn is an input data

point and yi ∈ {−1, 1} is class label, indicating one of two classes, A− and A+, to

which the input point belongs. We represent these data points by an m×n matrix A,

where the ith row of the matrix A, Ai, corresponds to the ith data point. We denote

alternately Ai (a row vector) and xi (a column vector) for the same ith data point.

We use an m×m diagonal matrix D defined by Dii = yi to specify the membership

of each input point. The main goal of the classification problem is to find a classifier
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that can predict the label of new unseen data points correctly. This can be achieved

by constructing a linear or nonlinear separating surface, f(x) = 0, which is implicitly

defined by a kernel function. We classify a test point x belonging to A+ if f(x) ≥ 0,

otherwise x belonging to A−. We will focus on the nonlinear case that is implicitly

defined by a Gaussian kernel function. The RSVM solves the following unconstrained

minimization problem

min
(v̄,γ)∈Rm̄+1

ν

2
‖p(1−D(Kσ(A, Ā′)v̄ − 1γ), α)‖2

2 +
1

2
(v̄′v̄ + γ2), (1)

where the function p(x, α) is a very accurate smooth approximation to (x)+ [15],

which is applied to each component of the vector 1 − D(Kσ(A, Ā′)v̄ − 1γ) and is

defined componentwise by

p(x, α) = x +
1

α
log(1 + e−αx), α > 0. (2)

The function p(x, α) converges to (x)+ as α goes to infinity. The reduced kernel

matrix Kσ(A, Ā′) ∈ Rm×m̄ in (1) is defined by

Kσ(A, Ā′)ij = e
−
||Ai − Āj||22

2σ2 , (3)

where Ā is the reduced set that is randomly selected from A in RSVM [15]. The

positive tuning parameter ν here controls the tradeoff between the classification error

and the suppression of (v̄, γ). Since RSVM has reduced the model complexity via

using a much smaller rectangular kernel matrix we will suggest using a larger tuning

parameter ν here. The solution of this minimization problem (1) for v̄ and γ leads to

the nonlinear separating surface

f(x) = v̄′Kσ(Ā, x)− γ =
m̄∑

i=1

v̄iKσ(Āi, x)− γ = 0. (4)

The minimization problem (1) can be solved via the Newton-Armijo method [15] di-

rectly and the existence and uniqueness of the optimal solution of this problem are

also guaranteed. We note that this nonlinear separating surface (4) is a linear com-

bination of a set of kernel functions
{
1, Kσ(Ā1, ·), Kσ(Ā2, ·), · · · , Kσ(Ām̄, ·)

}
, where

σ is the kernel parameter of each kernel function. In next section, we will apply
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the k-means algorithm to each class to generate cluster centroids and then use these

centroids to form the reduced set. Moreover we also give a formula to determine the

kernel parameter σ for each point in the reduced set automatically.

In the following sections, we will introduce several different methods for generating

more suitable reduced sets than the random selection scheme.

3 Clustering Reduced Support Vector Machine

We propose our new algorithm, Clustering RSVM (CRSVM), which combines the

RSVM [14] and RBF networks algorithm together. We also describe how to estimate

the kernel widths.

3.1 Parameters Estimation in RBFN

The most popular RBF networks can be described as

f(x) = w0 +
m̄∑

h=1
wh e

−
||x− ch||22

2σ2
h , (5)

where ch = (ch
1 , c

h
2 , ..., c

h
n) is a vector in the n-dimensional vector space and ||x− ch||2

is the distance between training (test) vectors x and ch. We can use the same decision

rule in previous section for binary classification. That is, we classify a test point x

belonging to A+ if f(x) ≥ 0, otherwise x belonging to A−. By RBFN approaches, we

have to choose three parameters (ch, σh ,wh) in equation (5) based on the training

dataset. For the first two parameters, many RBFN approaches were proposed that

apply variant clustering algorithms such as k-means to training set to generate the

cluster centroids as ch. The parameter σh is estimated based upon the distribution

of clusters. [21] estimates σh as

σh =
R(ch) · δ · √π

n

√
(r + 1)Γ(n

2
+ 1)

, where δ · √π = 1.6210 (6)

and R(ch) is defined as

R(ch) =
n + 1

n
(
1

r

r∑

q=1

||x̂q − ch||2), (7)
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where x̂1, . . . , x̂r are the r nearest samples to the cluster centroid ch. If the cluster

size is smaller than r, we use the all examples in this cluster to compute R̄(ch).

Since directly using parameter σh selected via RBF estimation did not perform

very well, we tried to solve the problem based on the new kernel width estimation

approach and adjusted the selected kernel width parameter σh to fall in the range of

the new estimation.

3.2 Kernel Widths Estimation and Algorithm Description

We note that the width parameter σ is the key performance factor of SVMs model.

Too large or too small σ value will lead to over-fitting or under-fitting respectively

[11].

Based on the thought of density estimation, we apply r-nearest neighbor estimated

algorithm to find the kernel width for centroids, in experiments we find that the class

with fewer samples will have larger estimated kernel width parameters in average, and

vice versa. Since the average distance between centroid and its r nearest neighbors

seems to be dominated to the density of the cluster, it will be larger for sparse case

and smaller for dense one. Using the proposed algorithm, for each centroid, we will

get larger kernel width (σ) for clusters with the sparse data points, the shape of

generated RBF would be smoother to cover a wider range of space and could be

used to distinguish all the sparse points. For centroids in dense cluster, the shape of

generated RBF should be sharper to just cover the dense points.

Since the original results are not well based on the default σh’s estimation, we

use a heuristic estimation in [9] to linearly interpolate in middle half of the search

range of σ which is able to automatically scale the distance factor in Gaussian kernel.

Let A∗̄
i and A∗̄

j be a pair of the closest distinct points in the training dataset and let

ρ = ‖A∗̄
i − A∗̄

j‖2
2, i.e., ρ = minAī 6=Aj̄

‖Aī − Aj̄‖2
2. We confine the kernel function value

of this pair of points to the range [0.150, 0.999]. That is

0.150 ≤ e
−
|A∗̄

i − A∗̄
j‖2

2

2σ2 = e
−

ρ

2σ2 ≤ 0.999. (8)

In practice, finding the centroids and closest distinct points in a massive training

dataset is very time consuming. We suggest the follow scheme for the upper and
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lower bound estimates based on a random subset. First, randomly sample a small

subset from the entire dataset, then calculate the upper and lower bounds using this

random subset, and finally adjust the bounds by a multiplicative factor (m/m̄)2/(4+d),

where m̄ is the subset size and d is the dimension of x.1

Based on the interpolation, we can calculate σhn from σh mentioned in (6), the

tuning parameter left in RSVM is only ν. We proposed a variant RSVM method that

uses clustering centroids as reduced set. The Clustering Reduced Support Vector

Machine (CRSVM) algorithm is described below.

Algorithm 3.1 Clustering Reduced Support Vector Machine

Let k be the number of cluster centroids for each class and r be a positive integer.

Step 1. For each class, runs k-means algorithm to find the cluster centroids ch. Use the

clustering results to form the reduced set Ā = [c1c2...c2k]′.

Step 2. For each centroid ch, computes the corresponding kernel parameter σhn .

Step 3. Let Ai denotes the ith training point, use the resulting parameters from Step 1

and Step 2 to construct the rectangular kernel matrix Kσ(A, Ā′)ih = e
−
||Ai − ch||22

2σhn
2

,

where Kσ ∈ Rm×2k, for i = 1, 2, ..., m and j = 1, 2, ..., 2k.

Step 4. Apply the Newton-Armijo Algorithm [14] to solve the problem (1), where Kσ(A, Ā′)

is the reduced kernel matrix obtained in Step 3.

Step 5. The separating surface is given as formula (4), where (v̄∗, γ∗) ∈ Rm̄+1 is the

unique solution of problem (1) that got from Step 4.

Step 6. A new unseen data point x ∈ Rn is classified as class +1 if v̄∗′Kσ(Ā, x)−γ∗ ≥ 0,

otherwise x is classified as class -1.

1For assessing the search range of σ using a reduced set, it should be adjusted accordingly
to account for the effect caused by using only a fraction m̄/m of data. It is well known in the
nonparametric literature that an ideal window width σ is of order σ = O(m−1/(4+d)) (cf. Stone
[26] and Silverman [23].) Thus, if only a fraction m̄/m of data is used, a multiplicative factor
(m/m̄)2/(4+d) adjustment should be adopted.

8



The conventional SVMs as well as RSVM determine parameter used in kernel

function via a tuning procedure. While, in our approach the kernel parameter is

determined automatically and individually for each point in the reduced set. This

can be achieved by estimating the approximate density of each resulting cluster [21].

For large datasets, learning will take a long time. We can randomly choose subset

from training set and stop the k-means algorithm at 5 iterations to save the learning

time. The numerical results are showed in subsection 5.2.

4 Systematic Reduced Set Selection

We now introduce another new algorithm to generate the reduced set which is con-

sisting of the informative data points. This algorithm is inspired by the key idea of

SVM, the SVM classifier can be represented by support vectors and the misclassified

points are a part of support vectors. Instead of random sampling the reduced set

in RSVM, we start with an extremely small initial reduced set and add a portion of

misclassified points into the reduced set iteratively based on the current classifier. We

note that there are two types of misclassified points and we select them respectively

and show this idea in Fig. 1. The new reduced kernel matrix can be updated from

the previous iteration. We only need to augment the columns which are generated

by the new points in the reduced set. We stop this procedure until the validation set

correctness is large enough.

Algorithm 4.1 Systematic Sampling RSVM Algorithm

Step 1. Randomly select an extremely small portion data points, such as m̄ = 5, from

the entire training data matrix A ∈ Rm×n as an initial reduced set which is

represented by Ā0 ∈ Rm̄×n.

Step 2. Generate the reduced kernel matrix K(A, Ā′
0) and perform RSVM algorithm

[14] to generate a tentative separating surface represented by f(x) = 0.

Step 3. Use the separating surface to classify the point which is in the training set

but not in the current reduced set. Let Ī+ be the index set of misclassified

points of positive example. That is, Ī+ = {i|f (Ai) ≤ 0, Ai ∈ A+}. Similarly,

Ī− = {i|f (Ai) > 0, Ai ∈ A−}.

9



Step 4. Sort the set Ī+ by the absolute value of f(AĪ+) and the set Ī− by f(AĪ−)

respectively. We named the resulting sorted sets S̄+ and S̄−.

Step 5. Partition S̄+ and S̄− into several subsets respectively such that each subset has

nearly equal number of elements just like Fig. 1. That is, let φ 6= s̄pi ⊂ S̄+,

∀i, 1 ≤ i ≤ k where k is the number of subsets. S̄+ = s̄p1 ∪ s̄p2 ∪ . . . ∪ s̄pk and

s̄pi ∩ s̄pj = φ, ∀i 6= j, 1 ≤ i, j ≤ k. Similarly, S̄− = s̄n1 ∪ s̄n2 ∪ . . . ∪ s̄nk and

s̄ni∩ s̄nj = φ, ∀i 6= j, 1 ≤ i, j ≤ k. Then, choose one point from each subset and

add these points into Ā0 to generate a new reduced set in place of Ā0.

Step 6. Repeat Step 2 ∼ 5 until the validation set correctness has arrived at the thresh-

old which is user pre-specified.

Step 7. Output the final classifier, f(x) = 0.

Figure 1: Illustrate the idea of Systematic Sampling RSVM Algorithm.

As mentioned above, the misclassified points can be treated as parts of support

vectors and added into the reduced set. Thus for taking the information of the mis-

classified points uniformly, we use the systematic sampling approach to select the

same number of misclassified points in different distance from them to separating

surface. This incremental model selection scheme can prevent to add too many mis-

classified points in the same distance level and catch represented misclassified points

in the reduced set of the new model as soon as possible. We showed the numerical

results to demonstrate the efficiency of this algorithm in subsection 5.2.
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5 Numerical Results

5.1 Spectral analysis

In this subsection, we attempt to explain why reduced kernel SVMs can perform

successful as well as full kernel SVM from a point of view of spectral analysis. In

order to avoid dealing with the huge and dense full kernel matrix in SVM, a low-rank

approximation to the full kernel matrix which is known as the Nyström approximation

has been proposed in many sophisticated ways [24, 28]. That is,

K(A,A′) ≈ K(A, Ã′)K(Ã, Ã′)−1K(Ã, A′) = K̃. (9)

We denote the Nyström approximation of K(A,A′) by K̃ in the rest of this paper.

Applying this approximation, for a vector v ∈ Rm,

K(A,A′)v ≈ K(A, Ã′)K(Ã, Ã′)−1K(Ã, A′)v = K(A, Ã′)ṽ, (10)

where ṽ = K(Ã, Ã)−1K(Ã, A′)v. In the variant RSVM scheme, ṽ is directly deter-

mined by fitting the entire dataset. We generate the Nyström approximation from

reduced sets sampled with random and k-means clustering selection scheme, and there

are little differences in eigenvalues from the full kernel matrix. In order to have a bet-

ter understanding of the differences of their spectral behaviors, we present six plots

for four datasets. In Figs. 2-5, the horizontal axis N is the number of the eigenvalues

listed. The left part of figures are based on low-rank approximation from 5% reduced

kernels and the right part are based on 3% reduced kernels. We explain the left

part of the figures and the right part is in a similar way. In Figs. 2(a) and (c)-5(a)

and (c), we plot the eigenvalues of the full and the approximation kernels. We split

them into two plots (a) and (c) due to their different scale. In Figs. 2(e)-5(e), the

differences between the eigenvalues of the full and the approximation kernels which

are generating from random scheme and clustering scheme are plotted against N.

From Fig. 2-5, we can observe that the quality of the approximation will depend

on the rate of decay of the eigenvalues of the full kernel matrix (green circle) based on

the same kernel width. The numerical simulations indicate that the reduced kernel

generated by the clustering scheme (red star) retains the fewer differences with the

full kernel than the traditional random selection scheme (blue diamond), even with

fewer elements in reduced set. The differences of eigenvalues between full kernel and
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Figure 2: The spectral analysis of Ionosphere dataset
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Figure 3: The spectral analysis of BUPA dataset
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Figure 4: The spectral analysis of Pima dataset
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Figure 5: The spectral analysis of Cleveland dataset
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approximation ones are all very small. These observations might give an explanation

why the CRSVM can provide good discriminant function estimations in supervised

learning tasks. This result indicate that the low rank approximation is good with

small reduced set.

5.2 Comparison of Variant RSVM schemes

All our experiments were performed on a personal computer, which utilizes a 1.47 GHz

AMD Athlon(tm) XP 1700 PLUS processor and 256 megabytes of RAM. This com-

puter runs on Windows XP operating system, with MATLAB 6 installed. We imple-

mented the CRSVM and SSRSVM algorithm using standard native MATLAB codes.

We used the Gaussian kernel in all our experiments. We test CRSVM, SSRSVM and

other SVMs on six public available datasets which five are from UC Irvine repository

[1] and one is from MIT CBCL [8]. In order to give a more objective comparison,

we run tenfold cross-validation on each dataset. All parameters in our experiments

were chosen for optimal performance on a tuning set and kernel parameter selected

in CRSVM are also adjusted in the estimated range of the tuning set, a surrogate

for a test set. The computer ran out of memory while generating the full nonlinear

kernel for the Mushroom and Face datasets. m̄ denotes the average size of reduced

set by running the SSRSVM algorithm. N/A denotes “not available” results because

the kernel K(A,A′) was too large to store. We also report the number of support

vectors in LibSVM’s result for each dataset to be compared with the size of reduced

set.

In all numerical tests in Table 1, the size of reduced set is smaller than the number

of support vectors resulted from LibSVM. This indicates that RSVMs use fewer kernel

bases to generate the discriminant function. RSVMs tend to have a simpler model and

it needs a smaller number of function evaluations when predicting a new unlabeled

data point. This is an advantage in the testing phase of learning tasks. Moreover, the

numerical results demonstrated that SSRSVM can keep as good test set correctness

as SSVM and RSVM and usually has less size of reduced set and time cost than

RSVM. CRSVM save the most tuning time with kernel parameter estimation with

fewer elements in reduced set and also keep the test correctness with RSVM. Table

1 summarizes the numerical results and comparisons of our experiments. It shows a
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comparison on the testing correctness and time cost of CRSVM, SSRSVM, RSVM

and SSVM algorithms.

Tenfold Test Set Correctness %

Tenfold Computational Time, Seconds

Methods

Dataset Size CRSVM SSRSVM RSVM SSVM LibSVM

m× n Correctness Correctness Correctness Correctness Correctness

Time sec. m̄ Time sec. m̄ Time sec. m̄ Time sec. Time sec. #SV

Ionosphere 95.88(96.76) 97.43 96.87 96.61 95.16

351× 34 0.3870 20 0.5620 20 0.6410 35 14.2190 0.1720 67.9

Cleveland Heart 84.36(86.20) 86.20 85.94 86.61 85.86

297× 13 0.3621 20 0.5620 20.6 0.3750 30 7.2500 3.5460 140.6

BUPA Liver 72.75(73.23) 74.80 74.87 74.47 73.64

345× 6 0.3081 18 0.4680 17.8 0.5000 35 10.1560 0.4620 216.2

Pima Indians 78.11(78.42) 78.00 77.86 77.34 75.52

768× 8 0.6127 17 0.9690 17.4 1.5160 50 68.1560 26.8440 410.1

Mushroom 88.41(89.06) 89.23 89.39 N/A 89.19

8124× 22 54.5073 79 74.6870 79 171.2500 215 N/A 171.4840 1803.5

Face 97.2(98.2) 98.51 98.39 N/A 98.15

6977× 361 58.4911 42 73.8120 42.2 115.2660 70 N/A 318.9400 404.3

Table 1: Tenfold cross-validation correctness results on six public datasets. The best

result is in boldface for each dataset. N/A Indicates the result is not available because

of computational difficulties. We list the best correctness tuned by different search

range from kernel with estimation for CRSVM in parentheses.

6 Conclusion

In this paper we propose two new approaches to generate the reduced set. One is

CRSVM which builds the model of RSVM via RBF (Gaussian) kernel construction.

Applying clustering algorithm to each class, we can generate cluster centroids of each

class and use them to form the reduced set in RSVM. We also estimate the approx-

imate density for each cluster to get the kernel parameter that is used in Gaussian

kernel. By this way, we can save a lot of tuning time. Another is SSRSVM that se-

lects the informative data points to form the reduced set iteratively while the RSVM

used random selection scheme. This algorithm is inspired by the key idea of SVM,

the SVM classifier can be represented by support vectors and the misclassified points

are a part of support vectors. SSRSVM starts with an extremely small initial reduced
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set and adds a portion of misclassified points into the reduced set iteratively based

on the current classifier until the validation set correctness is large enough. In our

experiments, we tested our methods, CRSVM and SSRSVM, on six public available

datasets [1, 8] respectively. Under the compatible classification performance on the

test set, CRSVM and SSRSVM can generate a smaller reduced set than the one via

random selection scheme. CRSVM can determine the different kernel width parame-

ters automatically for each point in the reduced set while the RSVM used a common

kernel parameter which is determined by a tuning procedure. Performing very well

averagely, SSRSVM is usually faster than RSVM and much faster than conventional

SVM. For providing a better understanding of the reduced kernel technique, we also

study the k-means clustering scheme and random selection scheme from a robust de-

sign point of view and measure the discrepancy between the full kernel by generating

their Nyström approximation. It showed that k-means clustering scheme has better

approximation results even with fewer elements in reduced sets. All results show

that our CRSVM and SSRSVM can provide good discriminant function estimations

via smaller reduced sets than the traditional random selection scheme in supervised

learning tasks. We can also benefit from saving a lot of cost in training and testing

stages.
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